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In the 10 years since the IAS Program on Univalent Foundations, which culminated
in the release of the HoTT Book [9], substantial progress has been made in the field of
homotopy type theory on several fronts, including solutions to leading open problems
with both logical and mathematical significance. In work by Coquand et al. [3], the
simplicial model of univalence [4] was shown have a constructive counterpart, verifying
Voevodsky’s canonicity conjecture. A computational proof assistant [7] was engineered
on this basis, and in 2022 was used to finally compute “Brunerie’s number” [5], finishing
the formal verification of a proof that was begun at the IAS of the calculation of the
fourth homotopy group of the 3-sphere, m4(S®) [2].

The homotopical semantics of Martin-Lof type theory originated with [1], and was
conjectured at the time by the author to provide an internal logic for higher toposes
[6]. This was established by Shulman [8] in 2019, giving semantics for HoTT in all
Grothendieck co-toposes. This talk will report on current research relating the con-
structive models underlying the new generation of computational proof assistants with
the classical homotopy theory of higher toposes.
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