• EITETSU KEN, On Σ_0^B -generalizations of counting principles over V^0 .

Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-0041, Japan.

E-mail: yeongcheol-kwon@g.ecc.u-tokyo.ac.jp.

Ajtai's discovery ([1]) of $V^0 \not\vdash ontoPHP_n^{n+1}$, where $ontoPHP_n^{n+1}$ is a Σ_0^B formalization of the statement "there does not exist a bijection between (n + 1) pigeons and n holes," was a significant breakthrough in proof complexity, and there have been many interesting generalizations and variations of this result.

In this talk, we first focus on the following well-known result ([2]): for any $p \ge 2$,

 $V^0 + Count_k^p \not\vdash injPHP_n^{n+1},$

where $Count_k^p$ denotes a Σ_0^B formalization of the modular counting principle mod p and $injPHP_n^{n+1}$ denotes that of the pigeonhole principle for injections.

We try to make this result uniform for p. We give three types of (first-order and propositional) formulae which at first glance seem to be generalized versions of counting principles, and compare their strengths over V^0 . In particular, we see two of them, $UCP_n^{l,d}$ and GCP, actually serve as uniform versions of $Count_n^p$ $(p \ge 2)$. Then we conjecture that $V^0 + UCP_k^{l,d} \not\vdash injPHP_n^{n+1}$ and give a sufficient condition

to prove it.

[1] AJTAI, M., The complexity of the Pigeonhole Principle, Combinatorica, vol.14 (1994), no. X, pp.417-433.

[2] BEAME, P., & RIIS, S., More on the relative strength of counting principles, Proof Complexity and Feasible Arithmetics (P. Beame, & S. Buss), American Mathematical Society, Providence, RI, 1998, pp.13–35.