▶ ERFAN KHANIKI, Nisan-Wigderson generators in Proof Complexity: New lower bounds.

Faculty of Mathematics and Physics, Charles University. Institute of Mathematics, Czech Academy of Sciences.

E-mail: e.khaniki@gmail.com.

A map $g: \{0,1\}^n \to \{0,1\}^m$ (m > n) is a hard proof complexity generator for a proof system P iff for every string $b \in \{0,1\}^m \setminus \operatorname{Rng}(g)$, formula $\tau_b(g)$ naturally expressing $b \notin \operatorname{Rng}(g)$ requires superpolynomial size P-proofs. One of the well-studied maps in the theory of proof complexity generators is Nisan–Wigderson generator. Razborov [1] conjectured that if A is a suitable matrix and f is a NP \cap CoNP function hard-on-average for P/poly , then NW_{f,A} is a hard proof complexity generator for Extended Frege.

In this talk, we prove a form of Razborov's conjecture for AC^0 -Frege. We show that for any symmetric $NP \cap CoNP$ function f that is exponentially hard for depth two AC^0 circuits, $NW_{f,A}$ is a hard proof complexity generator for AC^0 -Frege in a natural setting.

[1] A. A. RAZBOROV, Pseudorandom generators hard for k-DNF resolution and polynomial calculus resolution, Annals of Mathematics. Second Series, vol. 191, no. 2, pp. 415–472.