► GUILLAUME MASSAS, Duality for fundamental logic.

University of California, Berkeley.

E-mail: gmassas@berkeley.edu.

Holliday [2] recently introduced a non-classical logic called *fundamental logic*, which is meant to capture only those properties of the connectives \land, \lor and \neg that hold in virtue of their introduction and elimination rules in Fitch's natural deduction system for propositional logic. Holliday provides a semantics for fundamental logic in terms of *compatibility frames* (sets endowed with a relation of compatibility between its points) which generalizes both Goldblatt's semantics for orthologic and Kripke semantics for intuitionistic logic. In particular, any relation R on a set X determines a closure operator on $\mathcal{P}(X)$, and Holliday shows that any lattice can be represented as a sublattice of the fixpoints of such a closure operator for some compatibility frame (X, R).

In this talk, I will show how standard tools from duality theory allow one to lift Holliday's representation theorem to a full duality between the category of lattices and a category of topologized compatibility frames. The key idea is to embed any lattice into the fixpoints of a Galois connection on a distributive lattice in order to then use a version of the duality between modal distributive lattices and coalgebras of the Vietoris functor on the category of Priestley spaces [1, 3]. Time permitting, I will also show how this duality yields natural semantics for any extension of fundamental logic with connectives that are monotone (i.e., ordering-preserving or order-reversing) in each coordinate.

[1] CELANI, SERGIO AND JANSANA, RAMON, Priestley duality, a Sahlqvist theorem and a Goldblatt-Thomason theorem for positive modal logic, Logic Journal of IGPL, vol. 7 (1999), no. 6, pp. 683–715.

[2] HOLLIDAY, WESLEY H., A fundamental non-classical logic, arXiv preprint arXiv:2207.06993, (2022).

[3] PALMIGIANO, ALESSANDRA, A coalgebraic view on positive modal logic, Theoretical Computer Science, vol. 327 (2004), pp. 175–195.