▶ RUSSELL MILLER, Skolem functions and definable subsets of the absolute Galois group of Q.

Mathematics Dept., Queens College – CUNY, 65-30 Kissena Blvd., Queens, NY 11355, USA.

E-mail: russell.miller@qc.cuny.edu.

Fix a computable presentation $\overline{\mathbb{Q}}$ of the algebraic closure of the field \mathbb{Q} of rational numbers. With such a presentation, the automorphisms of $\overline{\mathbb{Q}}$ are naturally given as paths through a strongly computable finite-branching tree. The operations of composition and inversion on these automorphisms (i.e., on these paths) are both type-2 computable. Thus we have an effective way of considering $\operatorname{Aut}(\overline{\mathbb{Q}})$, the absolute Galois group of \mathbb{Q} .

In this context, one can discuss the computability of Skolem functions for $\operatorname{Aut}(\overline{\mathbb{Q}})$. We show that for *positive formulas* (not using the negation connective) with parameters, Skolem functions are close to computable: one can compute an approximation to the jump of a witness to an existential formula. (That is, these Skolem functions are *low*, in the sense of Brattka, de Brecht, and Pauly.) The same holds for Skolem functions for any Π_2 formula, positive or not, and for certain larger classes of formulas as well. We also present related results describing the subsets of $(\operatorname{Aut}(\overline{\mathbb{Q}}))^n$ definable by such formulas.