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Strongly nonexpansive mappings are a core concept in convex optimization. Re-
cently, they have begun to be studied from a quantitative viewpoint: U. Kohlenbach
has identified in [2] the notion of a ‘modulus’ of strong nonexpansiveness, which leads
to computational interpretations of the main results involving this class of mappings
(e.g. rates of convergence, rates of metastability). This forms part of the greater re-
search program of ‘proof mining’, initiated by G. Kreisel and highly developed by U.
Kohlenbach and his collaborators, which aims to apply proof-theoretic tools to extract
computational content (which may not be immediately apparent) from ordinary proofs
in mainstream mathematics (for more information on the current state of proof min-
ing, see the book [1] and the recent survey [3]). The quantitative study of strongly
nonexpansive mappings has later led to finding rates of asymptotic regularity for the
problem of ‘inconsistent feasibility’ [4, 7], where one essential ingredient has been a
computational counterpart of the concept of rectangularity, recently identified in [5] as
a ‘modulus of uniform rectangularity’.

Last year, Liu, Moursi and Vanderwerff [6] have introduced the class of ‘super
strongly nonexpansive mappings’, and have shown that this class is tightly linked to
that of uniformly monotone operators. What we do is to provide a modulus of super
strong nonexpansiveness, give examples of it in the cases e.g. averaged mappings and
contractions for large distances and connect it to the modulus of uniform monotonicity.
In the case where the modulus is supercoercive, we give a refined analysis, identifying a
second modulus for supercoercivity, specifying the necessary computational connections
and generalizing quantitative inconsistent feasibility.
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