► S. BONZIO AND M. PRA BALDI, On the structure of Bochvar algebras.

Department of Mathematics and Computer Science, University of Cagliari, Cagliari, Italy.

E-mail: stefano.bonzio@unica.it.

Artificial Intelligence Research Institute, Spanish National Research Council, Bellaterra, Spain.

E-mail: m.prabaldi@gmail.com.

The recent years have seen a renaissence of interests and studies around weak Kleene logics, logical formalisms that were considered, in the past, perhaps less attractive in the panorama of three-valued logics, due to infectious behavior of the third-value. This late (re)discovery regards, almost exclusively, *internal* rather than *external* logics. The latter, in essence consisting of linguistic expansions of the former, includes Bochvar external logic (introduced in [1]) and the external version of Paraconsistent weak Kleene (introduced by Segerberg [11]). Bochvar external logic B_e is defined in the algebraic language $\mathcal{L}: \langle \neg, \lor, \land, J_0, J_1, J_2, 0, 1 \rangle$ (of type (1, 2, 2, 1, 1, 1, 0, 0)), as the logic induced by the single matrix $\langle \mathbf{WK}^e, \{1\} \rangle$ (whose algebraic reduct is recalled in Fig. 1).

	-		\vee	0	12	1	\wedge	0	1/2	1
1	0		0	0	1/2	1	0	0	1/2	0
1/2	1/2		1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
0	1		1	1	1/2	1	1	0	1/2	1
								1		
		φ	$J_0 \varphi$		φ	$J_1\varphi$	φ	$J_2 \varphi$	_	
		1	0		1	0	1	1		
		1/2	0		1/2	1	1/2	0		
		0	1		0	0	0	0		

FIGURE 1. The algebra $\mathbf{W}\mathbf{K}^{e}$.

Finn and Grigolia [4, 5] introduced a Hilbert-style axiomatization for B_e and also the class of Bochvar algebras.

DEFINITION 1. A Bochvar algebra $\mathbf{A} = \langle A, \lor, \land, \neg, J_0, J_1, J_2, 0, 1 \rangle$ is an algebra of type $\langle 2, 2, 1, 1, 1, 1, 0, 0 \rangle$ satisfying the following identities and quasi-identities:

1. $x \lor x \approx x;$

2. $x \lor y \approx y \lor x;$

- 3. $(x \lor y) \lor z \approx x \lor (y \lor z);$
- 4. $x \land (y \lor z) \approx (x \land y) \lor (x \land z);$
- 5. $\neg(\neg x) \approx x;$
- 6. $\neg 1 \approx 0;$
- 7. $\neg (x \lor y) \approx \neg x \land \neg y;$
- 8. $0 \lor x \approx x;$
- 9. $J_2 J_k x \approx J_k x$, for every $k \in \{0, 1, 2\}$;
- 10. $J_0 J_k x \approx \neg J_k x$, for every $k \in \{0, 1, 2\}$;
- 11. $J_1 J_k x \approx 0$, for every $k \in \{0, 1, 2\}$;
- 12. $J_k(\neg x) \approx J_{2-k}x$, for every $k \in \{0, 1, 2\}$;
- 13. $J_i x \approx \neg (J_j x \lor J_k x)$, for $i \neq j \neq k \neq i$;
- 14. $J_k x \vee \neg J_k x \approx 1$, for every $k \in \{0, 1, 2\}$;

- 15. $((J_i x \vee J_k x) \wedge J_i x) \approx J_i x$, for $i, k \in \{0, 1, 2\}$;
- 16. $x \vee J_k x \approx x$, for $k \in \{1, 2\}$;
- 17. $J_0(x \lor y) \approx J_0 x \land J_0 y;$
- 18. $J_2(x \lor y) \approx (J_2x \land J_2y) \lor (J_2x \land J_2 \neg y) \lor (J_2 \neg x \land J_2y);$
- $19. \ J_0 x \approx J_0 y \ \& \ J_1 x \approx J_1 y \ \& \ J_2 x \approx J_2 y \ \Rightarrow \ x \approx y.$

The class \mathcal{BCA} of Bochvar algebras forms a proper quasi-variety. Only recently [2], it has been shown that \mathcal{BCA} algebrases Bochvar external logic.

In this contribution, we show that the algebraic construction of the Płonka sum [7, 8] (more comprehensive expositions are [9], [3, Ch. 2]) allows to provide a representation theorem for Bochvar algebras. Such a representation allows us to characterize logical filters and to provide a constructive proof of the that the \mathcal{BCA} is generated by the single algebra \mathbf{WK}^{e} .¹Moreover, we describe the lattice of (non-trivial) subquasivarieties of Bochvar algebras and, dually, the lattice of extensions of B_e , which consist of a three-elements chain, and prove that B_e is not passively structurally complete, while its non-trivial extension – here named NB_e – is structurally complete (see [6] and [10]). In the final part of the talk, we will focus on relevant algebraic properties for algebraizable logics and, upon relying once more on the Płonka sum representation theorem, we show that \mathcal{BCA} has surjective epimorphisms and the amalgamation property.

[1] D. Bochvar. On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus. *History and Philosophy of Logic*, 2(1-2):87–112, 1981. Translation of the original in Russian (Mathematicheskii Sbornik, 1938).

[2] S. Bonzio, V. Fano, P. Graziani, and M. Pra Baldi. A logical modeling of severe ignorance. *Journal of Philosophical Logic*, 2023 (online first).

[3] S. Bonzio, F. Paoli, and M. Pra Baldi. *Logics of Variable Inclusion*. Springer, Trends in Logic, 2022.

[4] V. Finn and R. Grigolia. Bochvar's algebras and corresponding propositional calculi. *Bulletin of the Section of Logic*, 9(1):39–43, 1980.

[5] V. Finn and R. Grigolia. Nonsense logics and their algebraic properties. *Theoria*, 59(1–3):207–273, 1993.

[6] T. Moraschini, J. G. Raftery, and J. J. Wannenburg. Singly generated quasivarieties and residuated structures. *Mathematical Logic Quarterly*, 66(2):150–172, 2020.

[7] J. Płonka. On a method of construction of abstract algebras. *Fundamenta Mathematicae*, 61(2):183–189, 1967.

[8] J. Płonka. On the sum of a direct system of universal algebras with nullary polynomials. *Algebra Universalis*, 19(2):197–207, 1984.

[9] J. Płonka and A. Romanowska. Semilattice sums. In A. Romanowska and J. D. H. Smith, editors, Universal Algebra and Quasigroup Theory, pages 123–158. Heldermann, 1992.

[10] J. G. Raftery. Admissible rules and the Leibniz hierarchy. *Notre Dame Journal of Formal Logic*, 57(4):569–606, 2016.

[11] K. Segerberg. A contribution to nonsense-logics. Theoria, 31(3):199–217, 1965.

 $^{^1\}mathrm{This}$ can be derived also from general results on algebraizable logics.