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Higman’s lemma and Kruskal’s theorem are two of the most celebrated results in
the theory of well quasi-orders. In his seminal paper [1], G. Higman obtained what
is known as Higman’s lemma as a corollary of a more general theorem, dubbed here
Higman’s theorem. J.B. Kruskal was well aware of this more general set up; in the very
end of his famous article [2], he explicitly stated how Higman’s theorem is a special
version, restricted to trees of finite branching degree, of Kruskal’s own tree theorem.
The equivalence has been subsequently formalized [3]. We transfer Pouzet’s proof in
the context of Reverse Mathematics, proving its validity over RCA0 and establishing
a rich schema of proof-theoretic implications; moreover, extending the investigations
made by Rathjen and Weiermann [4], we calculate the proof-theoretic ordinals of the
different versions of Kruskal’s theorem involved.
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